Disassortativity of random critical branching trees.
نویسندگان
چکیده
Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.
منابع مشابه
Branching random walks and contact processes on Galton-Watson trees
We consider branching random walks and contact processes on infinite, connected, locally finite graphs whose reproduction and infectivity rates across edges are inversely proportional to vertex degree. We show that when the ambient graph is a Galton-Watson tree then, in certain circumstances, the branching random walks and contact processes will have weak survival phases. We also provide bounds...
متن کاملPower-Law Size Distribution of Supercritical Random Trees
– The probability distribution P (k) of the sizes k of critical trees (branching ratio m = 1) is well known to show a power-law behavior k. Such behavior corresponds to the mean-field approximation for many critical and self-organized critical phenomena. Here we show numerically and analytically that also supercritical trees (branching ration m > 1) are ”critical” in that their size distributio...
متن کامل4 A pr 1 99 9 The Upper Critical Dimension of the Abelian Sandpile Model
The existing estimation of the upper critical dimension of the Abelian Sandpile Model is based on a qualitative consideration of avalanches as self-avoiding branching processes. We find an exact representation of an avalanche as a sequence of spanning sub-trees of two-component spanning trees. Using equivalence between chemical paths on the spanning tree and loop-erased random walks, we reduce ...
متن کاملInvited Talks
Bénédicte Haas, University of Paris-Dauphine, France Limits of Non-increasing Markov Chains and Applications to Random Trees and Coalescents Consider a non-increasing Markov chain with values in the set of non-negative integers, starting from a large integer !. We describe its scaling limit as ! → ∞, under the assumption that the large jump events are rare and happen at rates that behave like a...
متن کاملMinimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees
We establish a second-order almost sure limit theorem for the minimal position in a one-dimensional super-critical branching random walk, and also prove a martingale convergence theorem which answers a question of Biggins and Kyprianou [Electron. J. Probab. 10 (2005) 609–631]. Our method applies, furthermore, to the study of directed polymers on a disordered tree. In particular, we give a rigor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 79 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2009